FINITE ELEMENT METHODS (Professional Elective – I)

B.Tech. III Year II Sem. Course Code: NT603PC/ME611PE

L	T/P/D	С
3	0/0/0	3

Pre-requisites: Mechanics of Solids

Course Objective: The aim of the course is to provide the participants an overview on Finite Element Method, Material models, and Applications in Civil Engineering. At the end of the course, the participants are expected to have fair understanding of:

- Basics of Finite Element Analysis.
- Available material models for structural materials, soils and interfaces/joints.
- Modeling of engineering systems and Soil–Structure Interaction (SSI).
- Importance of interfaces and joints on the behavior of engineering systems.
- Implementation of material model in finite element method and applications

Course Outcomes: At the end of the course, the student will be able to, Apply finite element method to solve problems in solid mechanics, fluid mechanics and heat transfer. Formulate and solve problems in one dimensional structures including trusses, beams and frames. Formulate FE characteristic equations for two dimensional elements and analyze plain stress, plain strain, axi-symmetric and plate bending problems. Implement and solve the finite element formulations using MATLAB.

UNIT – I

Introduction to Finite Element Method for solving field problems. Stress and Equilibrium. Boundary conditions. Strain – Displacement relations. Stress – strain relations.

One Dimensional Problems : Finite element modeling coordinates and shape functions. Assembly of Global stiffness matrix and load vector. Finite element equations. Treatment of

Assembly of Global stiffness matrix and load vector. Finite element equations, Treatment of boundary conditions, Quadratic shape functions.

UNIT – II

Analysis of Trusses: Stiffness Matrix for Plane Truss and Space Truss Elements, Stress Calculations.

Analysis of Beams: Element stiffness matrix for two node, two degrees of freedom per node beam element, Load Vector, Deflection, Stresses

UNIT – III

Finite element modeling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions. Estimation of Load Vector, Stresses

Finite element modeling of Axi-symmetric solids subjected to Axi-symmetric loading with triangular elements. Two dimensional four noded Isoparametric elements and numerical integration.

UNIT – IV

Steady State Heat Transfer Analysis: one dimensional analysis of Slab, fin and two dimensional analysis of thin plate.

Analysis of a uniform shaft subjected to torsion.

UNIT – V

Dynamic Analysis: Formulation of finite element model, element - Mass matrices, evaluation of Eigen values and Eigen vectors for a stepped bar, truss and beam.

Finite element – formulation to 3 D problems in stress analysis, convergence requirements, Mesh generation. techniques such as semi automatic and fully Automatic use of softwares such as ANSYS, NISA, NASTRAN, etc.

TEXT BOOKS:

- 1. Finite Element Methods: Basic Concepts and applications/Alavala/PHI
- 2. Introduction to Finite Elements in Engineering, Chandrupatla, Ashok and Belegundu/Pearson

REFERENCE BOOKS:

- 1. An Introduction to the Finite Element Method / J.N.Reddy/ Mc Graw Hill
- 2. Finite Element Analysis / SS Bhavikatti / New Age
- 3. Finite Element Method/ Dixit/Cengage